首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   0篇
  国内免费   1篇
综合类   1篇
  2021年   1篇
排序方式: 共有1条查询结果,搜索用时 4 毫秒
1
1.
Biological nutrient removal grows into complicated scenario due to the microbial consortium shift and kinetic competition between phosphorus (P)-accumulating and nitrogen (N)-removing microorganisms. In this study, three sequential batch reactors with constant operational conditions except aeration patterns at 6 h cycle periods were tested. Intermittent aeration was applied to develop a robust nutrient removal system aimed to achieve high energy saving and removal efficiency. The results showed higher correspondence of P-uptake, polymeric substance synthesis and glycogen degradation in intermittent-aeration with longer interval periods compared to continuous-aeration. Increasing the intermittent-aeration duration from 25 to 50 min, resulted in higher process performance where the system exhibited approximately 30% higher nutrient removal. This study indicated that nutrient removal strongly depends on reaction phase configuration representing the importance of aeration pattern. The microbial community examined the variation in abundance of bacterial groups in suspended sludge, where the 50 min intermittent aeration, favored the growth of P-accumulating organisms and nitrogen removal microbial groups, indicating the complications related to nutrient removal systems. Successful intermittently aerated process with high capability of simple implementation to conventional systems by elemental retrofitting, is applicable for upgrading wastewater treatment plants. With aeration as a major operational cost, this process is a promising approach to potentially remove nutrients in high competence, in distinction to optimizing cost-efficacy of the system.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号